Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses
نویسندگان
چکیده
The mechanism and role of RNA structure elements in the replication and translation of Caliciviridae remains poorly understood. Several algorithmically independent methods were used to predict secondary structures within the Norovirus, Sapovirus, Vesivirus and Lagovirus genera. All showed profound suppression of synonymous site variability (SSSV) at genomic 5' ends and the start of the sub-genomic (sg) transcript, consistent with evolutionary constraints from underlying RNA structure. A newly developed thermodynamic scanning method predicted RNA folding mapping precisely to regions of SSSV and at the genomic 3' end. These regions contained several evolutionarily conserved RNA secondary structures, of variable size and positions. However, all caliciviruses contained 3' terminal hairpins, and stem-loops in the anti-genomic strand invariably six bases upstream of the sg transcript, indicating putative roles as sg promoters. Using the murine norovirus (MNV) reverse-genetics system, disruption of 5' end stem-loops produced approximately 15- to 20-fold infectivity reductions, while disruption of the RNA structure in the sg promoter region and at the 3' end entirely destroyed replication ability. Restoration of infectivity by repair mutations in the sg promoter region confirmed a functional role for the RNA secondary structure, not the sequence. This study provides comprehensive bioinformatic resources for future functional studies of MNV and other caliciviruses.
منابع مشابه
Cloning and molecular characterization of Omp31 gene from Brucella melitensis Rev 1 strain
Brucellosis, caused by the genus Brucella bacterium, is a well-known infection among domestic animals. Considering the serious economic and medical consequences of this infection, various preventive efforts have been made through using recombinant vaccines, based on outer membrane protein (OMP) antigens of Brucella species. The objective of the present study was to clone, analyze the sequence, ...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملInter- and intragenus structural variations in caliciviruses and their functional implications.
The family Caliciviridae is divided into four genera and consists of single-stranded RNA viruses with hosts ranging from humans to a wide variety of animals. Human caliciviruses are the major cause of outbreaks of acute nonbacterial gastroenteritis, whereas animal caliciviruses cause various host-dependent illnesses with a documented potential for zoonoses. To investigate inter- and intragenus ...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملReview of Animal Noroviruses
Among enteric caliciviruses, noroviruses belong to the genus Norovirus, one of the four accepted genera in the family Caliciviridae. These single-stranded, positive-sense RNA viruses are highly variable both genetically and antigenically. Several animal enteric caliciviruses that are morphologically indistinguishable and genetically closely related to human noroviruses have been identified. The...
متن کامل